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ABSTRACT
NAND flash memory can provide cost-effective secondary storage
in mobile embedded systems, but its lack of a random access
capability means that code shadowing is generally required, taking
up extra RAM space. Demand paging with NAND flash memory
has recently been proposed as an alternative which requires less
RAM. This scheme is even more attractive for OneNAND flash,
which consists of a NAND flash array with SRAM buffers, and
supports eXecute-In-Place (XIP), which allows limited random
access to data on the SRAM buffers.

We introduce a novel demand paging method for OneNAND
flash memory with XIP feature. The proposed on-line demand
paging method with XIP adopts finite size sliding window to cap-
ture the paging history and thus predict future page demands. We
particularly focus on non-critical code accesses which can disturb
real-time code.

Experimental results show that our method outperforms conven-
tional LRU-based demand paging by 57% in terms of execution
time and by 63% in terms of energy consumption. It even beats
the optimal solution obtained from MIN, which is a conventional
off-line demand paging technique by 30% and 40% respectively.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles - Virtual memory;
D.4.2 [Operating Systems]: Storage Management - Secondary
storage

General Terms
Algorithms, Design, Measurement, Performance
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1. INTRODUCTION
Today, a wide range of portable multimedia embedded systems

are available to many different categories of end user. Thanks to the
continuing evolution of semiconductors, it is not difficult to achieve
the functionality and performance necessary for portable multime-
dia applications. However, cost-effectiveness is still a critical factor
in determining profitability for a manufacturer.

Most low-cost embedded systems deploy on-chip SRAM as
their main memory and NAND flash as secondary storage. The
amount of on-chip SRAM significantly affects the cost of the chip,
and thus optimization of the SRAM footprint is an important issue.
A typical configuration uses from dozens to a few hundred KB of
SRAM, which is mostly dedicated to key functions such as a media
decoder. Better interfaces and support for DRM (digital rights
management) has recently become mandatory even for low-cost
embedded systems. Therefore, the demand for more SRAM grows
rapidly, which is a severe challenge for cost-effective design.

Although the use of off-chip SDRAM can resolve the memory
requirement, this approach is not suitable for low-cost systems be-
cause off-chip memory dramatically increases power consumption,
system complexity and raises other issues such as signal integrity,
which result in a significant increase in running costs. For these
reasons, demand paging with small size on-chip SRAM and NAND
flash [1][2][3] used to be a popular way to cope with the limited-
size main memory available with 8-bit microprocessors. Now it is
being reintroduced to segregate real-time tasks, such as a media de-
coder, which are pinned on the on-chip SRAM, and non-real-time
tasks such as the user interface and DRM, which are loaded from
the NAND flash to the SRAM on demand. Fig. 1 shows a typical
NAND flash demand paging architecture.

Suppose the footprint of an audio codec is 100KB and its DRM
footprint is 200KB. Old MP3 players with a basic user interface and
no DRM can function with a 128KB on-chip SRAM, but at least
384KB is required to support these extra features. Alternatively,
NAND flash and demand paging can be used to support a better
interface and DRM, and the requirement for on-chip SRAM can
still be kept at 128KB, although the performance will be lower than
a 384KB systems. This is a good compromise because multimedia
performance will be the same because the audio codec remains on
the on-chip SRAM.

The interface to NAND flash is asynchronous and sequential,
and so there are severe delays from the demand paging system
whenever there is a page fault in demand paging systems. Re-
cently, Samsung Semiconductor announced a new hybrid memory
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Figure 1: Different memory architectures in media players.

that combines SRAM and NAND flash, called OneNAND [4][5].
In OneNAND the page register is replaced with dual random-
accessible SRAM buffers, which support simultaneous page load-
ing from the flash array to the buffer, and data transfer between the
buffer and the on-chip SRAM. In addition, the use of the SRAM
buffers gives OneNAND another feature, XIP (eXecute-In-Place)
capability, which can be utilized for initial boot-up sequence which
eliminates the need for NOR flash, although the capability is
limited to the SRAM buffers. In general, programs residing in sec-
ondary storage devices need to be copied into main memory before
execution; but some secondary storage devices such as ROMs and
NOR flash memories can run executables without duplication, and
this arrangement is called XIP.

However, current demand paging schemes do not utilize the XIP
capability of the OneNAND flash. We will present a new demand
paging technique for OneNAND flash that fully utilizes its XIP ca-
pability. This technique distinguishes pages that need to be loaded
on to the on-chip SRAM for protracted use from pages that can be
accessed directly from the SRAM buffers on the OneNAND chip
and immediately discarded. This significantly reduces the number
of pages loaded on to the on-chip SRAM, cutting the number of
page faults, the page-fault penalty, and thus the energy consump-
tion.

The contribution of this paper can be summarized as follows:
this is the first implementation of demand paging based on the
XIP capability of OneNAND flash. While we aim to optimize the
choice of pages to load on to on-chip SRAM, the complexity of
the optimal solution has led up to develop an algorithm that adopts
a finite sliding window. This approach is based on accurate energy
consumption models of memory components, and is intended to
lead to a quality solution for commercial application. Averaged ex-
perimental results show that our method outperforms conventional
LRU-based demand paging by 57% in terms of execution time
and by 63% in terms of energy consumption. It is actually better
than optimal off-line solution of the conventional demand paging
problem, called MIN, with a saving of 30% in time and 40% of
energy.

2. RELATED WORK
Flash memory is becoming more widely used in mobile embed-

ded systems, to store code as well as data, due to its non-volatility,
solid-state reliability and low power consumption. Flash memory
is commonly categorized into two types: NOR and NAND. The
NOR type is particularly well suited to code storage and execute-
in-place (XIP) applications that require high-speed random access
[6], while NAND flash requires sequential access and has a long ac-
cess latency, making it suitable for data storage due to its lower cost
per bit and higher density [6]. NAND flash memory is widely used
in cellular phones and portable memory cards in consumer elec-
tronics.

Park et al. characterized the energy consumption of conventional
paging mechanisms applied to embedded applications stored in

NAND flash memory [2]. They proposed an energy-aware page
replacement policy for the applications stored in NAND flash
memory. Their approach requires virtual memory or hardware
(MMU) support.

NAND XIP [1] allows direct code execution from NAND flash
memory using a cache controller, but the additional cost of this
hardware will be unacceptable in many low-end embedded sys-
tems.

In industry, NAND XIP [7][5] has been implemented using
small buffers and I/O interface conversion. This new NAND
architecture is commonly called Hybrid NAND flash. However,
use of the XIP feature of Hybrid NAND has largely been limited
to boot code execution.

Many authors [8][9][10][11] have dealt with the problem of
data reuse in the design of a custom memory hierarchy. These
approaches have used profile-based off-line analysis, with the
target memory hierarchy and the data layout fixed at run-time.
They are similar to our scheme in that the target memory system is
multi-layered and the memory allocation policy plays an important
role in performance and energy optimization. However, unlike
previous authors, we change the memory hierarchy dynamically at
run-time through judicious use of the OneNAND SRAM buffers
and XIP. Depending on the access pattern of the referenced page,
the OneNAND buffers may function as main memory, or as buffers
that transfer data from secondary storage to main memory. More-
over, whereas previous work is focused on optimizing the cost of
memory access, we try to optimize the page miss count, because
the cost of loading missed pages is more significant than the
memory access cost in NAND flash memory systems.

3. DEMAND PAGING FOR ONENAND FLASH
MEMORIES

Demand paging is a virtual memory technique in which code
or data is loaded from the secondary storage only when needed
by a process. Traditional demand paging schemes are aimed at
general-purpose systems which have hard disk drives as their
secondary storage. However, increasing demand for memory has
made demand paging a common feature of embedded systems,
even though it generally requires the support of memory manage-
ment unit (MMU). Many recent embedded processors, such as
the Motorola 68060, Intel PXA255 and the ARM920T, support
an MMU, which simplifies the inclusion of demand paging in
embedded systems.

In addition to the performance issue, many portable embedded
systems require high mobility. To cope with this property, recent
embedded systems adopt new memory components such as flash
memories which enable to reduce overall weight and power con-
sumption, providing faster access to data than hard disks. Due to
the introduction of new components into the storage hierarchy, it
is necessary to re-evaluate demand paging as a method of fully ex-
ploiting the benefits of new types of memory.

We will first review the conventional paging system to under-
stand its weakness in the context of new memory components such
as OneNAND flash memory, and then we will briefly itemize the
features of OneNAND flash memory from the paging perspective.
Finally, we will summarize the performance criteria that must be
considered in assessing a paging system for real-time embedded
systems in more detail.

3.1 Conventional demand paging with One-
NAND Flash

The standard paging scheme used with OneNAND flash mem-
ories is similar to the classical paging method used in general-
purpose systems with hard disk drives. A OneNAND flash memory
consists of an internal flash array and SRAM buffers. Fig. 2 depicts
a typical demand paging procedure in a memory hierarchy that
includes OneNAND flash memory. Because the OneNAND chip
has two buffers, buffer-level interleaving can be used to hide some
of the time taken to move data from flash array to the buffers. The
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Figure 2: Conventional demand paging with a OneNAND flash
memory.

RAM between the CPU and the OneNAND flash memory can be
either SRAM or DRAM. But SRAM is preferred in embedded
systems because of its fast accessibility and low power, and we
will assume the use of on-chip SRAM throughout this paper. To
distinguish clearly between the on-chip SRAM and the SRAM
buffers in the OneNAND flash memory, we will call them the
SRAM and the OneNAND buffer respectively.

If a page fault occurs, the CPU asks the OneNAND flash mem-
ory to fetch the page. Once the request has been granted, the
OneNAND flash memory first transfers the page from the flash
array to the OneNAND buffers, and then the OneNAND buffers
forward the page to the RAM. After this two-stage transfer is
complete, the CPU resumes its execution by taking the appropri-
ate data or instruction. The CPU can only access data residing
on SRAM, so the number of accesses to a newly loaded page
should ideally be sufficient to amortize the cost loading it from
the OneNAND buffer to the on-chip SRAM. But there is no way
to access any data in OneNAND flash memory without loading it
to on-chip SRAM. Due to its similarity with a conventional hard
disk drive, we can directly apply classical LRU (Least recently
used) and FIFO methods to OneNAND flash memory systems.
The theoretically optimal solution to this problem is incorporated
in the MIN algorithm in [12].

3.2 A new approach to demand paging using
the OneNAND XIP feature

The main benefit of the XIP feature of OneNAND is that the
CPU can treat the OneNAND buffer as a unit in a cache line,
and access data directly. Using this feature, we can overcome
the weakness of conventional demand paging method by avoiding
loading data on to the on-chip SRAM if the expected number of
accesses to a page will not be large enough to amortize its loading
cost. This case is depicted in Fig. 3(b), where the CPU directly ac-
cesses the OneNAND buffer even though a page fault has occurred.
Fig. 3(a) shows the page loading procedure which is similar to that
shown in Fig. 2. The efficiency of this scheme depends critically
on how the OneNAND buffers are used. There are three possible
ways to use the two OneNAND buffers. The first way is to use
them both for paging. This is the standard procedure that we have
already mentioned and we will not analyze it further. The second
technique is to use a single OneNAND buffer for paging while
the other is dedicated to the support of direct accesses through
XIP. In this case, we cannot exploit the buffer-level interleaving
effect and page utilization will be low if a high-demand page is
mapped to the buffer dedicated to XIP, and the benefit of XIP will
then be lower than we expect. The third method is a hybrid of the
previous two. A page is loaded into a OneNAND buffer from the
flash array when a page fault occurs. This procedure is applicable
to both methods but they are differentiated in the next step, in
which we must determine whether to upload the data to the on-chip
SRAM or to keep it in a OneNAND buffer. In the third method,
we adaptively switch between these two actions so as to maximize
page utilization.

Deciding whether the page in the OneNAND buffers should
be uploaded to the on-chip SRAM for paging or retained for XIP
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Figure 3: Demand paging using the XIP feature of OneNAND
flash memory.

access requires knowledge of the likely future access pattern of
pages, and we will address this issue in detail in Section 4. The
paging scheme can be further generalized to additional OneNAND
buffers, but we limit our focus to the two OneNAND buffer which
are available in contemporary OneNAND flash memories.

3.3 Performance criteria
Table 1 shows the performance of a paging system, in terms of

energy consumption as well as performance, within a real-time
embedded system. The memory access statistics are related to the
number of data communications between the blocks of the system,
as shown in Fig. 2. Obviously, the number of data communication
in the system critically affects overall execution time. Inside a
OneNAND flash memory, there are NFlash2Bu f page transfers
between flash array and the OneNAND buffers. Similarly, there
are NBu f 2SRAM transfers between the OneNAND buffers and the
SRAM. These transfers are caused by page faults. We also need to
measure the number of accesses to a unit of the cache line rather
than to a page. NSRAM Read counts the accesses resulting from page
hits, and NBu f Read is incremented when the CPU directly accesses
the data residing on a OneNAND buffer. The four timing measures
in Table 1 correspond to the four access counts that we have just
itemized. Energy measures have not been considered in classical
demand paging schemes designed for general purpose systems.
Again the four energy parameters in Table 1 correspond to the
access counts.

Using these 12 parameters, we can formulate the overall execu-
tion time and energy consumption of a memory system that incor-
porates a OneNAND flash memory as follows.

ETotal = NFlash2Bu f ·EFlash2Bu f +NBu f 2SRAM ·EBu f 2SRAM

+NBu f Read ·EBu f Read +NSRAM Read ·ESRAM Read

TTotal = NFlash2Bu f ·TFlash2Bu f +NBu f 2SRAM ·TBu f 2SRAM

+NBu f Read ·TBu f Read +NSRAM Read ·TSRAM Read

In conventional demand paging NFlash2Bu f is equal to NBu f 2SRAM
and NBu f Read is zero. Using XIP these parameters depend on the
buffer management policy.
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Table 1: Performance parameters of the paging system
Memory access statistics

NFlash2Bu f Total number of page transfers
from the flash array to the OneNAND buffer

NBu f 2SRAM Total number of page transfers
from the OneNAND buffer to the SRAM

NBu f Read Total number of page reads
from the OneNAND buffer due to cache line fetch

NSRAM Read Total number of page reads
from the SRAM due to cache line fetch

Timing parameters
TFlash2Bu f Time for a page transfer

from the flash array to the OneNAND buffer
TBu f 2SRAM Time for a page transfer

from the OneNAND buffer to the SRAM
TBu f Read Time for a page read

from the OneNAND buffer
TSRAM Read Time for a page read

from the SRAM
Energy parameters

EFlash2Bu f Energy consumption for a page transfer
from the flash array to the OneNAND buffer

EBu f 2SRAM Energy consumption for a page transfer
from the OneNAND buffer to the SRAM

EBu f Read Energy consumption for a page read
from the OneNAND buffer

ESRAM Read Energy consumption for a page read
from the SRAM

4. ONENAND BUFFER MANAGEMENT
FOR DEMAND PAGING WITH XIP

We will now describe a buffer management technique called
PM-XIP for the hybrid use of a OneNAND flash memory with
two OneNAND buffers. The quality of a buffer management
policy critically depends on its ability to predict future page access
patterns. Obviously, the page access pattern cannot be statically
formulated due to the unpredictable control flow of a particu-
lar piece of software. Chung et al. proposed a sliding window
technique to predict the future behavior of service requests for
dynamic power management (DPM) of hard disk drives [13]. Its
effectiveness has been demonstrated [14] by comparing the tech-
nique with other adaptive DPM methods. Our problem is similar
in the sense that we need an on-line prediction method based on
a discrete history, and we use a similar method to predict which
pages will be in demand in the future. We also need to predict the
victim page, residing on the on-chip SRAM or on the OneNAND
buffers which is in least demand and will be replaced by a new
page from the flash array via the OneNAND buffer. We could
use the same sliding window technique for victim page selection,
but we use LRU instead because the victim page selection does
not deal with a large number of pages compared to instruction
codes.

Fig. 4 shows an example of a sliding window (which we will
call a page history window) and shows how it is used to determine
the page to be loaded to the on-chip SRAM. The size of the page
history window is finite and it only stores a certain length of the
access pattern: when a new page is accessed, the oldest infor-
mation must be discarded. Pages are only replaced when a page
fault occurs, and no changes are considered during a run of page
hits. When a page fault occurs, the fault page is loaded into one
of the OneNAND buffers (selected by the LRU policy) and then
the pages on both the OneNAND buffers become candidates to be
loaded to on-chip SRAM. If the previous access frequency of a
page is more than a predefined threshold, it is loaded to the on-chip
SRAM. If the previous access frequencies of both pages exceed the
threshold, two victim pages must be selected from those residing
on the on-chip SRAM. Fig. 5 shows pseudocode for PM-XIP.

The size of the page history window and the predefined threshold
control the prediction quality. If the window is too large, the pre-
diction is contaminated by old access patterns which may be quite

AD D A EA AB B B C D

Current
requestHistory window

B

OneNAND
buffers

Flash 
array

A

C D E

On-chip SRAMOneNAND

A

Figure 4: The page history window.

PM-XIP: A page manager for demand paging with OneNAND XIP
Input: ρ=(ρ1, ρ2, · · · ): page request sequence

ω: window size
θ: predefined threshold

Procedure:
Page manager:

1. do
2. fetch next requested page ρi
3. if(ρi is available from the on-chip SRAM)
4. increase the SRAM page access count;
5. else if(ρi is available from the OneNAND buffer)
6. increase the OneNAND page access count;
7. else
8. call Page fault handler;
9. end if

10. update the history window;
11. until program is terminated

Page fault handler:
12. if(OneNAND buffer is full)
13. discard one victim page from the OneNAND buffer in LRU order;
14. end if
15. load ρi from the internal NAND array to the OneNAND buffer;
16. increase the page load count;
17. for each page in the OneNAND buffer
18. if(the number of page occurrences in the history window

exceeds θ)
19. if(SRAM is full)
20. discard one victim page from the SRAM in LRU order;
21. end if
22. move current page from the OneNAND buffer

to the on-chip SRAM;
23. increase the page move count;
24. end if
25. end for

Figure 5: Pseudocode of OneNAND-XIP paging algorithm.

different from recent patterns. But, if the window size is too small,
there will insufficient information for a good prediction. A suitable
window size can be determined by code profiling.

5. EXPERIMENTS

5.1 Experimental setup
We implemented a general-purpose paging system simulator that

is capable of simulating various paging techniques including LRU,
MIN and PM-XIP. Table 2 shows the benchmark applications,
which are components of a UI or an image viewer. Page request
sequences for input to the paging system simulator are captured
by a system-level cycle-accurate simulator [15]. The simulated
system has a 4-way associative 4KB instruction cache with a block
size of 4-words. The logical page size is set to 1KB, which is the
same as the OneNAND buffer size. Page request sequences are
captured until the application terminates, except the page request
sequence for FFT was truncated at 1M due to its long execution
time. We performed the simulation with a 4KB, 8KB, 16KB or
a 32KB on-chip SRAM depending of the size of the benchmark
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Table 2: Benchmark applications
Application Code size (KB) Number of page requests

DJPEG 148 295081
CJPEG 195 268980

Basicmath 32 1889410
FFT 30 1000000

Table 3: Timing and energy costs for the simulation

Time cost Value (µs) Energy cost Value (nJ)
TFlash2Bu f 29.33 EFlash2Bu f 1295.48
TBu f 2SRAM 12.86 EBu f 2SRAM 1056.21
TBu f Read 0.22 EBu f Read 15.24

TSRAM Read 0.04 ESRAM Read 1.79

codes. Here the size of the SRAM refers to the dedicated page
buffer and not to the entire on-chip SRAM.

The timing and energy models of the on-chip SRAM are ob-
tained from data sheets [16]. We chose a 64KB high-density
single-port synchronous static RAM for the on-chip SRAM in
this simulation. We also used Samsung’s KFG5616X1A, 256Mb
OneNAND flash, and characterized the timing and energy models
from previous authors’ work [17] because the information in the
data sheets [4] sufficient to calculate all the timing and energy
parameters used in the simulation. The clock frequencies of the
on-chip SRAM and the OneNAND flash were set to 100MHz
and 50MHz respectively, which are values commonly used for
contemporary embedded systems. The parameters for the timing
and energy model are shown in Table 3.

5.2 Simulation results
We have explored our demand paging method by varying three

key parameters: the window size and threshold value, which deter-
mine the quality of prediction by the algorithm, while the on-chip
SRAM size characterizes the architecture. To assess the impact of
these parameters, we performed the simulation for window sizes
from 2 to 1024, threshold values between 0% and 100% of the win-
dow size, and on-chip SRAMs of 4KB and 32 KB.
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Figure 6: Energy consumption of PM-XIP (DJPEG).

Fig. 6 and Fig. 7 show the energy consumption and the elapsed
time of PM-XIP, normalized to that of LRU, when running DJPEG
on 4KB and 32KB SRAM. With a 4KB SRAM, the best results
in energy consumption are obtained when the window size is 8
and the threshold value is 50% of the window size, as shown in
Fig. 6(a). The best results in elapsed time are obtained where the
window size and the threshold value are same to that of energy
consumption. Energy consumption is 61% better than the standard
method of demand paging, and the elapsed time is reduced by
57%.

With a 32KB SRAM, the energy consumption and the elapsed
time are best when both parameters are 0, as shown in Fig. 6(b)
and Fig. 7(b), meaning that it is always best to move a page to the
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Table 4: Time (ms) and energy (mJ) results for PM-XIP run-
ning on SRAMs of 4KB and 32KB (DJPEG, ω=8, θ=4)

Performance SRAM size = 4KB SRAM size = 32KB
index PM-XIP LRU MIN PM-XIP LRU MIN

NFlash2Bu f 16968 33773 22266 3523 100 85
NBu f 2SRAM 6115 33773 22266 64 100 85
NBu f Read 161787 0 0 38875 0 0

NSRAM Read 133294 295081 295081 256206 295081 295081
(E ·N)Flash2Bu f 21.98 43.75 28.85 4.56 0.13 0.11
(E ·N)Bu f 2SRAM 6.46 35.67 23.52 0.07 0.11 0.09
(E ·N)Bu f Read 2.47 0 0 0.59 0 0
(E ·N)SRAM Read 0.24 0.53 0.53 0.46 0.53 0.2

ETotal 31.15 79.95 52.9 5.68 0.77 0.73
(T ·N)Flash2Bu f 497.67 990.56 653.06 103.33 2.93 2.49
(T ·N)Bu f 2SRAM 78.64 434.32 286.34 0.82 1.29 1.09
(T ·N)Bu f Read 35.59 0 0 8.55 0 0
(T ·N)SRAM Read 5.33 11.8 11.8 10.25 11.8 11.8

TTotal 617.23 1436.69 951.21 122.95 16.02 15.39

on-chip SRAM when it is accessed from the OneNAND buffers.
This occurs because the whole working set can fit on to the on-chip
SRAM. This is unlikely in practice because semiconductor area is
a critical design constraint for cost-effectiveness.

Table 4 shows more details of the simulation results at the
optimal point for a 4KB SRAM, when the window size is 8 and
the threshold is 4. The number of page transfers from the buffer
to the on-chip SRAM (NBu f 2SRAM) is significantly reduced by
64.0%, because PM-XIP is transferring popular pages to on-chip
SRAM whereas LRU and MIN transfer all pages. Our method
also reduces the number of page transfers from the flash array to
the buffer (NFlash2Bu f ), which reduces the number of page faults
compared to LRU by 49.8% and by 23.8% compared to MIN, with
a 4KB SRAM.

With a large 32KB SRAM in Table 4, both NFlash2Bu f and
NBu f 2SRAM are dramatically reduced. However, NFlash2Bu f is much
larger for our method than that for the other two. This is due to the
aggressive replacement policy results from a small page history
window. When the area constraint is not tight and there is a large
on-chip SRAM, we can take a more conservative approach by
choosing an arbitrary window size and setting the threshold to
zero, which produces the same results as LRU. This shows how we
can modify the aggressiveness of PM-XIP without changing any
hardware.

We conducted another set of simulations to understand the
performance variation when we have an on-chip SRAM space
constraint. Most real-time applications pin their kernel code on the
on-chip SRAM and other code has to share the remaining space.
It is not easy to estimate how large this will be at an early design
stage, since it very much depends on the code optimization policy.
For this reason, a demand paging method should be as insensitive
as possible to the on-chip SRAM space, and require few changes
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Table 5: Performance and energy comparison of PM-XIP(8,4)
and PM-XIP(ωopt ,θopt) (normalized to LRU)

SRAM Ttotal Etotal
size Application PM-XIP PM-XIP MIN PM-XIP PM-XIP MIN

(KB) (8,4) (ωopt ,θopt ) (8,4) (ωopt ,θopt )

DJPEG 0.43 0.43 0.66 0.39 0.38 0.66
4 CJPEG 0.44 0.40 0.63 0.40 0.36 0.63

Basicmath 0.45 0.34 0.59 0.40 0.28 0.59
FFT 0.61 0.48 0.66 0.54 0.39 0.66

DJPEG 0.43 0.41 0.64 0.36 0.35 0.63
8 CJPEG 0.38 0.38 0.65 0.33 0.32 0.65

Basicmath 0.47 0.42 0.55 0.40 0.35 0.54
FFT 0.75 0.57 0.65 0.64 0.47 0.65

DJPEG 2.11 0.89 0.76 1.87 0.80 0.75
16 CJPEG 3.23 1.00 0.92 2.83 1.00 0.92

Basicmath 0.46 0.36 0.44 0.38 0.30 0.43
FFT 0.05 0.04 0.21 0.05 0.04 0.20

DJPEG 7.67 1.00 0.96 7.45 1.00 0.95
32 CJPEG 6.66 1.00 0.95 6.51 1.00 0.94

Basicmath 5.71 1.00 1.00 5.77 1.00 1.00
FFT 1.41 1.00 1.00 1.66 1.00 1.00

to hardware or software to cope with different configurations.
To assess the quality of our method from this perspective, we
performed simulations while varying the space remaining on the
on-chip SRAM. We selected two cases and compared PM-XIP
with LRU and MIN: a window of 8 and a threshold of 4, and a
window of ωopt and a threshold of θopt , where ωopt and θopt are
optimized for least energy and best performance. We also consider
different sizes of instruction codes to see the interplay between the
remaining SRAM space and the code size. The simulation results
are summarized in Table 5.

We have already shown that PM-XIP is comparable to LRU and
MIN when the remaining SRAM space is large enough, and that our
method outperforms the others when the remaining SRAM space is
small. The interesting point in this table is the comparison between
the two conditions. With 4KB or 8KB of SRAM environments
the optimal parameters slightly outperform 8 and 4 when running
DJPEG and CJPEG. However, the optimal values perform much
better on Basicmatch and FFT, in terms of energy consumption as
well as elapsed time. This is closely related to the size of working
set (or the number of pages actively demanded). Only 17 pages are
actively accessed by the FFT code, while more than 80 pages are
actively accessed by DJPEG code. The page size in our experiment
is 1KB, so there can be only 4 pages in a 4KB SRAM and 8 pages in
an 8KB SRAM environment. This suggests that our method can be
effectively tuned for a certain range of page sizes and proportions
of remaining space in the SRAM. Parameter optimization improves
the performance by 10%, even when the working set is 17.5 times
larger than the SRAM size, which is the case for CJPEG and a
4KB SRAM. The benefit of optimization becomes clearer when we
consider 16KB and 32KB of SRAM. In these environments, PM-
XIP performs significantly better with optimal parameters due to
the reduction of page size and the amount of remaining SRAM.

Of course there are storage and computation overheads in main-
taining the page history window. However, the size overhead is
negligible for all the benchmarks because the optimal or near-
optimal points always exist for a window size of less than 16. The
computational overhead consists of the threshold value calculation
and updating of the page history window. The threshold value is
only calculated once for each page fault, and the load is negligible.
The page history window must be updated for every page request,
but implemented using just one modulus operation for indexing
and one write operation for recording the current page request.
Moreover, accesses to the page history window are highly likely to
be performed in the CPU cache because these accesses occurs very
frequently and the window is small.

6. CONCLUSION
We have introduced an innovative demand paging scheme called

PM-XIP, that fully utilizes the XIP capability of OneNAND flash.

PM-XIP can deal with large size non-real-time tasks without
increasing the on-chip SRAM footprint, which is crucial in cost-
effective embedded systems. After pinning the real-time tasks in
SRAM, modern embedded systems can suffer lack of memory
to run other tasks, such as a quality user interface and DRM.
PM-XIP runs 57% faster and requires 63% less energy, on average,
when compared to the conventional LRU-based demand paging
technique. PM-XIP even outperforms the optimal off-line demand
paging technique, called MIN, by as much as 30% in terms of exe-
cution time and by 40% in terms of energy consumption. PM-XIP
enables aggressive reduction of the on-chip SRAM footprint, even
below the minimum working set size. We expect that the combina-
tion of OneNAND flash with a novel demand paging scheme such
as PM-XIP will provide a significantly enhanced demand paging
performance compared to conventional NAND flash.
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